
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56120 551

Model Driven Embedded System Testing Using

Real-Time Data

Pravin Y. Karmore
1
, Pradeep K. Butey

2

Research Scholar, Dept. of Electronics & Computer Science, RTM Nagpur University, Nagpur, India
 1

Associate Professor, Department of Computer Science, Kamla Nehru College, Nagpur, India
 2

Abstract: Model driven development and testing of an embedded system is a great solution over the unnecessary

wasting of time and money in the physical development and testing of embedded systems. This paper mainly focuses

on the model driven development of an embedded system using the Simulink system development tool and testing of

the modelled system to find out the better system using real-time data. The testing of embedded system before the

actual development of hardware, software and testing using modelling approach is a very good advantage of the system

developers. Today‟s embedded system development and testing becomes very complex due to increase in customer

demands from household appliances to industry equipment.

Keywords: Embedded system testing, model driven development, image processing, real-time data.

I. INTRODUCTION

Testing is executed by conducting a program developed

with test inputs and comparing the observed output with

the expected one. Testing is a static and dynamic activity.

It includes unit, interface, usability, functionality,

performance, operability and security testing of software.

Model Driven Testing (MDT) [1] [2] is executed by

conducting verification with test inputs and comparing the

observed output with the expected one. It is difficult to test

the whole system, therefore selective components of the

system are considered for testing. If the input space of the

System Under Test (SUT) is quite very large, its testing

has to be conducted with a small subset of test cases.

Embedded systems generally use microprocessors that

contain many functions of a computer on a single device

(i.e. System-on-chip). Embedded software is often

integrated in highly complex devices. Medical device

software, automotive software, avionics software, military

software and railway software are all used to control

devices or vehicles on which people's lives depend. A fault

in that software may not just be inconvenient, it could be

disastrous.

II. BACKGROUND

A. Embedded System

An embedded system is a specialized microcontroller

based computing device used as a part of another system

or machine. Normally, an embedded system is built on a

single microprocessor board with the software stored in

ROM. Some common examples of applications of

embedded systems are telecommunications, automobiles,

consumer electronics, and plant control. Even though the

application domains are dissimilar from each other, they

have universal organization in functional configuration. A

layered embedded system structure, including application

programming interfaces, hardware-dependent software,

application software, and hardware platform is shown in

Fig. 1 [5][6]. Application program interfaces are essential

for communication between the hardware-dependent

software (System Software) and the application layer of

software (Application programs). The hardware-dependent

software is attached with the external physical hardware

and network. Real-time Operating System (RTOS) and

device drivers are closely attached to the hardware

platform of the system. According to an application

domain, performance and size are the constraints that

usually influence the hardware platform. As per specific

application, a processor and memory system must meet a

minimum requirement.

Fig. 1 Architecture of an embedded system

B. Designing Embedded System

An embedded system designing includes main four steps

[3]. The basic steps are the following:

 Requirements specification

 Hardware and software partitioning

 Software design

 Hardware design

 Interface design

 System integration and test

System developers can derive required functions after

evaluating system requirements. These functions are

considered for allocation of hardware or software.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56120 552

Development of hardware and software is done parallel

with the interface design. After development of all

required hardware and software components, they are

integrated to build a system and go ahead for the testing of

system. The system level design steps are shown in Fig. 2.

Fig. 2 System-level design processes

C. Model Driven Design

Model driven design (MDD) is based on the efficient use

of models as a primary objective throughout the software

engineering life cycle. The main objective of MDD is to

provide a central role to functional models in the

specification, design, integration, and validation of

software. Model driven development uses models to

represent a system‟s elements, the structural relationships

between them and their dynamic interactions and

behaviour. Modelling the structural relationship supports

design exploration and system partitioning. The modelling

behaviour and interactions are required to verify designs

by verifying models and for code generation. But many

embedded software developers hesitate to accept the

generated code. The rejection of code by developers

means loss of MDD advantages. Use of the MDD

approach means accepting automatic code generation from

models.

III. TEST FRAMEWORK FOR MODEL DRIVEN

DESIGN

Using MDD, we can eliminate specification and design

errors early in the development cycle where they are

cheapest and easiest to rectify. It helps to increase the

degree of automation that can be applied to the

development process by means of automatic code

generation. The test driven development of MDD[7]

facilitate parallel hardware/software design by enabling

system models to be tested using a simulated execution

mechanism on development hosts before the target system

is available. Such a development reduces the required

testing effort by applying automated formal verification

methods to the functional models in collaboration with

simulating execution behaviour instead of relying solely

on testing the implemented program code. The Fig. 3

describes the proposed approach of model driven

development of embedded system and testing with the

real-time data. The MDD platforms widely used in the

safety, security and mission-critical domains such as rail

transportation, aerospace, automotive and military

applications is gradually increasing. If an MDD platform

is used with sufficient verification and testing facilities on

design models, the unit testing requirement can be reduced

[8]. The MDD standards differentiate between the

operational embedded software changed as part of the

system from the modelling tools used to build that

software. The different standards for safety-critical

embedded software often needs the tool users to carry out

an evaluation of the tool to classify it according to whether

or not the tool itself can introduce errors into the

operational embedded software and to perform an

evaluation of the tool against the appropriate criteria for

safe and secure use [4].

Fig. 3 Test framework for model driven design of

embedded system

IV. MODELLING AND TESTING OF EMBEDDED

SYSTEM

In this approach we used Simulink [9] for the development

of model based embedded system. Here we developed two

models of embedded system and combined them in one

model for the processing and testing. The combined model

first captures image from the run-time source. The first

sub-model designed by using Simulink system generator

blocks and second sub-model designed by hard coding in

Matlab. The Fig. 4 depicts the embedded system model

using Simulink. The plotting of image histograms is done

using the Simulink tool. The histogram equalization is the

process which increases the dynamic range of the gray-

level in a low-contrast image to cover a full range of gray-

levels. The comparative analysis of histograms and error

graph is done. This process repeated for the other run-time

images. The final conclusion drawn from the analysis that,

which model is best for the development of embedded

system hardware and software. The following sections

describe the overview of the used components and basic

methodologies used for this research work.

Fig. 4 Simulink model for embedded system

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56120 553

A. Overview of MATLAB Simulink

Simulink allows automatic code generation, simulation

and continuous testing and verification of embedded

systems. Simulink has a graphical editor, customizable

block libraries, and solvers for modeling and simulating

dynamic systems. Its integration with MATLAB, allows

you to integrate MATLAB algorithms into models and

also export results after the simulation to MATLAB for

further analysis. According to MathWorks, Simulink

coupled with their other products to automatically generate

C source code for real-time implementation of systems.

Due to Simulink flexibility and capacity for quick iteration

it is widely used tool for embedded system designs and

production systems. Simulink provides Embedded Coder

(EC) to generate efficient code for embedded systems. It

also allows verification and validation of models through

requirement traceability, modeling style checking and

model coverage analysis. Simulink Design Verifier (SDV)

capable of identifying design errors such as division by

zero, integer overflow and dead logic. It also generates test

case scenarios for model checking within the environment.

The Simulink tool TPT used to perform a formal

verification and validation process to stimulate Simulink

models. It is also used during the development phase

where the developer generates inputs to test the system

[9][10].

Fig. 4 Original image captured from web camera

B. Histogram

The histogram is statically representation of frequency of

intensity values in the image. It is used to improve the

visual appearance of an image and also be used to

determine what type of processing has been applied to an

image. Histograms can be used to identify a wide range of

image defects, such as saturation, spikes and gaps, impact

of image compression. The histogram of a digital image

with L total possible intensity levels in the range [0, G] is

defined as the discrete function:

ℎ 𝑟𝑘 = 𝑛𝑘

where, 𝑟𝑘 is the k
th

 intensity level in the interval [0, G]

nk is the number of pixels in the image whose intensity

level is [0, G]

G: [255 for images of class uint8, 65535 for images class

uint16 and 1.0 for images of class double].

Normalization of histograms can be obtained by dividing

all elements of by ℎ 𝑟𝑘 the total number of pixels in the

image.

𝑃 𝑟𝑘 =
ℎ 𝑟𝑘

𝑛
=

𝑛𝑘

𝑛
 k=1, 2, …., L

n=total number of pixels

C. Histogram Equalization

It is a method which increases the dynamic range of the

gray-level in a low-contrast image to cover a full range of

gray-levels. Histogram equalization is achieved by having

a transformation function (TF) 𝑇𝑟 , which can be defined to

be the Cumulative Distribution Function (CDF) of a given

Probability Density Function (PDF) of a gray-level in a

given image.

For intensity levels that are continuous quantities

normalised to the range [0, 1].

Let 𝑃𝑟(𝑟) – probability density function (PDF) of the

intensity levels. The following transformation on the input

levels to obtain output levels, s:

𝑠 = 𝑇𝑟 = 𝑃𝑟(𝜔)𝑑𝜔
𝑟

0

ω − dummy variable of integartion

The general histogram equalization formula is:

ℎ𝑣 = 𝑟𝑜𝑢𝑛𝑑
𝑐𝑑𝑓 𝑣 − 𝑐𝑑𝑓𝑚𝑖𝑛
 𝑀 ∗ 𝑁 − 𝑐𝑑𝑓𝑚𝑖𝑛

× (𝐿 − 1)

cdfmin − minimum value of cdf
 M ∗ N − image′s number of pixels. (M − width, N

− height)

L - Number of gray scale levels.

D. Equalization Transformation Function

In histogram equalization, the spreading out of the

frequencies in an image (or equalizing the image) is a

simple way to improve dark or washed out images. An

original image is converted into „hist eq‟ image using a

transformation function (see Fig. 5).

Fig. 5 Original image captured from web camera

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56120 554

Fig. 6(a) Histogram of original image

Fig. 6(b) Histogram of equalized image

E. Binning of Histogram

The binning of histogram is done to limit the large value

and further process on histogram makes easy. Binning is

done to reduce a large number of computations in high

resolution image. For example If an image is of 32 bit

size, then “32-bit image = 232 = 4,294,967,296 columns”.

Ultimately, process calculations require higher number of

the bit size of computation and time require for execution

automatically increased.

So, given the image I : [0, K – 1], the binned

histogram for I is the function

h i = card u, v ai ≤ I u, v < ai+1 }

where 0 = a0 < a1 … < aB = K

card → Number size of set of pixels

l u, v → Pixel′sintensity is between ai and ai+1

 Bin size = (Number of distinct values of image/ Number

of bins)

To create 256 bins from 14-bit image use the following:

Bin size =
214

256
= 64

h(0) 0 I(u, v) < 64

h(0) 64 I(u, v) < 128

h(0) 128 I(u, v) < 192

. . . .

. . . .

. . . .

h(j) aj I(u, v) < aj+1

. . . .

. . . .

h(255) 16320 I(u, v) < 16384

F. Calculations and Results

The original Image size is 240 x 320.

Let us consider [M,N]=[8 8] of original image for showing

the result. An 8-bit gray-scale image has the following

values as shown in Table 1.

TABLE I

VALUES OF I u, v
22 18 15 16 20 24 26 25

22 20 19 21 24 26 25 24

22 22 23 25 27 27 25 23

24 24 25 25 26 26 25 25

26 26 24 23 23 24 26 28

26 26 25 23 22 24 28 31

24 26 27 27 25 26 30 33

22 26 30 31 30 29 31 34

Fig. 7 Histogram equalization on same image (Histogram

Equalized3 is most accurate among the others)

The histogram for this sub image is shown in the Table 2

below. Pixel values that have a zero count are excluded.

TABLE II

PIXEL VALUES AND COUNT

Value Count Value Count Value Count

15 1 22 6 29 1

16 1 23 4 30 3

17 0 24 9 31 2

18 1 25 10 32 0

19 1 26 12 33 1

20 2 27 4 34 1

21 1 28 2 35 0

Fig. 8 After equalizing the histogram the original intensity

range is vanished as shown in Fig.

The Fig. 9 shows the histograms and error plotting of

model-1 and model-2 after processing on the same image.

The comparison between these results is helpful to identify

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.56120 555

the best model for the further development of a specified

embedded system.

Fig. 9 Histogram and error histogram

V. CONCLUSION AND FUTURE WORK

Embedded systems are the integral part of our day-to-day

life. The various devices such as medical instrumentation,

bank machines, industry control systems, household

machines and many more are now depending on the

embedded system mechanism. The testing of embedded

devices is becoming crucial day-by-day due to the

increasing device complexities and safety and security

requirements for human beings. The model based testing

approach for embedded system is a great solution over the

building of physical systems and testing. The modelling

tools and languages are helpful to avoid unnecessary

wasting of time and money in the physical development of

embedded systems. In this approach real-time data

accepted by the system and tested according to the

specifications. The error verification using the plotting of

histograms makes it easy to understand the behaviour of

the model. Furthermore, such type of testing can be

applied to the continuous streaming of the images and the

system behaviour can be tested. This type of work is

required for the testing of multiple models and for the

heterogeneous designs of embedded system models. The

combination of image processing with the Neuro-fuzzy

approach may be the future approach in the way of model

based embedded system testing.

REFERENCES

[1] Hartman, Alan. “Model-Based Test Generation Tools”.

http://www.agedis.de, 2011.

[2] Pravin Karmore and Pradeep Butey, “Analysis of Model-based
Testing Methodology for Embedded Systems”, International

Journal of Advanced Research in Computer Science and Software
Engineering, Vol. 6, Issue 5, pp. 308-314, May- 2016,.

[3] Byeongdo Kang, Young-Jik Kwon, Roger Y. Lee, “A Design and

Test Technique for Embedded Software”, Proceedings of the 2005
Third ACIS IEEE Int'l Conference on Software Engineering

Research, Management and Applications (SERA‟05), 2005.

[4] Pravin Y. Karmore and Pradeep K. Butey, “Technical View of
Testing Methodologies for Diverse Designs of Embedded System”,

International Journal on Information Technology Management, vol.

2, ISSN2277 8659, 2013, pp. 123–131.
[5] Alberto Sangiovanni-Vincentelli and Grant Martin, “Platform-

Based Design and Software Design Methodology for Embedded

Systems,” IEEE Design & Test of Computers, November-
December, 2001, pp.23-33.

[6] M. Sgroi, L. Lavagno, and A. Sangiovanni Vincentelli, “Formal

Models for Embedded Systems Design,” IEEE Design & Test of
Computers, April-June, 2000, pp.2-15.

[7] David Astels, “Test Driven Development: A Practical Guide”,

Upper Saddle River, NJ: Prentice Hall PTR, 2003.

[8] Pravin Y. Karmore, Pradeep K. Butey, “Test Driven Development
of Model Driven Embedded Systems”, International Journal of

Science, Engineering and Technology Research (IJSETR), ISSN:

2278 – 7798, vol.5, Issue 6, pp. 1941-1945, June. 2016.
[9] Agam Kumar Tyagi, “Matlab and Simulink for Engineers”, Oxford

publication.

[10] James B. Dabney, Thomas L. Harman, “Mastering Simulink”,
Prentice Hall publication.

BIOGRAPHIES

Pravin Y. Karmore pursuing Ph.D. in

Computer Science from RTM Nagpur

University, Nagpur. He is obtained

Master in Computer Applications

degree from RTM Nagpur University,

Nagpur. And M.Phil. degree in

Computer Science from Alagappa

University, Karaikudi. At present he is working as

Assistant Professor at Dept. of Computer Applications,

Shri Ramdeobaba College of Engineering and

Management, Nagpur. His research area is Software

Engineering, Embedded Systems, Artificial Neural

Networks and Fuzzy Logic.

Dr. Padeep K. Butey obtained M.Sc.

degree and PGDCS&A from RTM

Nagpur University, Nagpur. He

obtained his Ph.D. degree in

Computer Science from RTM Nagpur

University, Nagpur. Now he is

working as Associate Professor and

Head at Dept. of Computer Science, Kamla Nehru

College, Nagpur. He has published more than 40 research

papers in various national and international conferences

and journals. His research area includes RDBMS, Data

Mining, Artificial Neural Networks and Fuzzy Logic.

